1 (a	(i)	$I_1 = I_2 + I_3$	B1
	(ii)	$I_1 = I_4$ OR same	B1
(b) (i)	(<i>V</i> = <i>IR</i> = 0.80 × 3.0 =) 2.4 V	A1
	(ii)	I = V/R in any algebraic form OR 2.4 / 2 OR (b)(i) / 2 OR any voltage divided by 2 $(I_3 = V/R = 2.4 / 2 =)$ 1.2 A OR	C1 A
		$I_3/I_2 = 3/2$ $I_3 = 3/2 \times 0.8 \text{ A} = 1.2 \text{ A}$	(C1) (A1
	(iii)	$(I_2 + I_3 \text{ OR Current through } R = 0.8 + 1.2) = 2.0 \text{ (A)}$ OR 6V / 2A used Parallel combination formula: $1/r = 1/r_1 + 1/r_2$ OR $(r =) r_1 r_2/(r_1 + r_2)$ Use of formula: combined resistance = $1.2 \text{ (}\Omega\text{)}$ $(R + 1.2 = 6/2 = 3.0 \Omega R =) 1.8 \Omega$	C1 C C A1
		Current through $R = 0.8 + 1.2 = 2.0$ (A) P.D. across $R = 6.0 - 2.4$ = 3.6 (V) $R = 3.6 / 2.0 = 1.8 \Omega$	((C1) (C1) (A1)
			[Total: 9]

2	(a)	Transistor	B1
	(b)	Resistor / variable resistor / rheostat identified Light-dependent resistor / LDR identified Resistor or alternative in gap A; LDR in gap B	B1 B1 B1
	(c)	Thermistor / thermal resistor / heat or temperature dependent resistor identified Thermistor (or alternative name) in gap A <u>and</u> resistor in gap B	B1 B1
			[Total: 6]

3	(a	(i)	total $R = 320 (\Omega)$ or V per lamp = 6 (V)	۸ 1	[0]
			I = (240/320 or 6/6 -) 0.75 A ech from previous line	AI	[2]
		(ii)	use of $P = VI \text{ OR } I^2 R \text{ OR } V^2 / R$ 4.5 W ecf from (a)(i)	C1 A1	[2]
	(b)	res tota no. ma acc	sistance of each lamp = 8 × 1.05 = 8.4 (Ω) al <i>R</i> = 240/0.9 = 266.7 (Ω) OR <i>V</i> per lamp = 8.4 x 0.9 = 7.56 (V) . of lamps (= 266.7/8.4) = 31.7 OR (= 240/7.56) = 31.7 ax. no. of failed lamps = 8 cept reverse logic	B1 B1 B1	[4]
				[Tota	al: 8]

4 (a) $1/R = 1/R_1 + 1/R_2$ or $R = R_1 R_2/(R_1 + R_2)$ or $R_1 R_2/(R_1 + R_2)$ or use of C1 1/8 = 1/24 + 1/X OR 8 = 24R/(24 + R) or calculations/clear logic to eliminate wrong values 12Ω C1 A1 [3]

(b)	battery and resistors correct, condone twin small circles, cell, zig-zag resistors ammeter correct position ignore switches, condone breaks in circuit ≤ 1 mm condone wrong symbols if clear two resistors in series scores 0/2 as ammeter cannot be in right place	B1	[2]
(ii)	use of $I = V/R$ in any form or V/R 24 Ω resistor: $I = (6/24=) 0.25$ A other resistor: $I = 6$ /his (a) correctly evaluated (6/12 = 0.5A) accept 1 s.f. if exact if contradiction between answer of (a) in working and answer in answer line, base marking on answer line	B1 B1 B1	[3]

5	(a	(i)	(I =) V/R or 230/46 5.0A *Unit penalty applies	C1 A1	
		(ii)	(P =) IV or V ² /R or I ² R or 230 × 5 or 230 ² /46 or 5 ² × 46 ecf from 8(a)(i) 1100/1150/1200 W *Unit penalty applies ecf from 8(a)(i)	C1 A1	
	(b)	san	ne as 8(a)(i) (c.a.o.) *Unit penalty applies	B1	[5]
	*Ap	oply ι	unit penalty once onl		
6	(a)	(i)	ight-dependent resistor/LDR	B1	
		(ii)	(in bright light) resistance of Z/LDR/circuit falls/is low current rises/is large/(starts to) flow/more p.d. across R relay (coil) magnetises/attracts/is magnet switch closes/completes second circuit	B1 B1 B1 B1	
	(b)) <u>the</u>	ermistor replaces LDR or LDR removed and thermistor added	B1	[6]